An inverse problem for the relativistic Schrödinger equation with partial boundary data
نویسندگان
چکیده
منابع مشابه
Inverse Problem for an Inhomogeneous Schrödinger Equation * †
Let (− k 2)u = −u + q(x)u − k 2 u = δ(x), x ∈ R, ∂u ∂|x| − iku → 0, |x| → ∞. Assume that the potential q(x) is real-valued and compactly supported: q(x) = q(x), q(x) = 0 for |x| ≥ 1, 1 −1 |q|dx < ∞, and that q(x) produces no bound states. Let u(−1, k) and u(1, k) ∀k > 0 be the data. Theorem.Under the above assumptions these data determine q(x) uniquely.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولInverse boundary value problem for Schrödinger equation in cylindrical domain by partial boundary data
Let Ω ⊂ R2 be a bounded domain with ∂Ω ∈ C∞ and L be a positive number. For a three dimensional cylindrical domain Q = Ω× (0, L), we obtain some uniqueness result of determining a complex-valued potential for the Schrödinger equation from partial Cauchy data when Dirichlet data vanish on a subboundary (∂Ω \ Γ̃) × [0, L] and the corresponding Neumann data are observed on Γ̃× [0, L], where Γ̃ is an ...
متن کاملLipschitz Stability of an Inverse Boundary Value Problem for a Schrödinger-Type Equation
In this paper we study the inverse boundary value problem of determining the potential in the Schrödinger equation from the knowledge of the Dirichlet-to-Neumann map, which is commonly accepted as an illposed problem in the sense that, under general settings, the optimal stability estimate is of logarithmic type. In this work, a Lipschitz type stability is established assuming a priori that the...
متن کاملBoundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method
In this paper, we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain. This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve. To this end, the boundary integral equation method is used. Since the resulting system of linea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applicable Analysis
سال: 2019
ISSN: 0003-6811,1563-504X
DOI: 10.1080/00036811.2018.1549321